
www.manaraa.com

Predicting research trends with semantic and neural
networks with an application in quantum physics
Mario Krenna,b,c,d,e,1 and Anton Zeilingera,b,1

aFaculty of Physics, Vienna Center for Quantum Science & Technology, University of Vienna, 1090 Vienna, Austria; bInstitute for Quantum Optics and
Quantum Information, Austrian Academy of Sciences, 1090 Vienna, Austria; cDepartment of Chemistry, University of Toronto, Toronto, ON M5S 3H6,
Canada; dDepartment of Computer Science, University of Toronto, Toronto, ON M5T 3A1, Canada; and eVector Institute for Artificial Intelligence, Toronto,
ON M5G 1M1, Canada

Contributed by Anton Zeilinger, October 24, 2019 (sent for review August 19, 2019; reviewed by Ebrahim Karimi and Terry Rudolph)

The vast and growing number of publications in all disciplines of
science cannot be comprehended by a single human researcher. As
a consequence, researchers have to specialize in narrow subdisci-
plines, which makes it challenging to uncover scientific connec-
tions beyond the own field of research. Thus, access to structured
knowledge from a large corpus of publications could help push
the frontiers of science. Here, we demonstrate a method to build
a semantic network from published scientific literature, which we
call SEMNET. We use SEMNET to predict future trends in research
and to inspire personalized and surprising seeds of ideas in sci-
ence. We apply it in the discipline of quantum physics, which
has seen an unprecedented growth of activity in recent years. In
SEMNET, scientific knowledge is represented as an evolving net-
work using the content of 750,000 scientific papers published
since 1919. The nodes of the network correspond to physical
concepts, and links between two nodes are drawn when two
concepts are concurrently studied in research articles. We identify
influential and prize-winning research topics from the past inside
SEMNET, thus confirming that it stores useful semantic knowledge.
We train a neural network using states of SEMNET of the past
to predict future developments in quantum physics and confirm
high-quality predictions using historic data. Using network the-
oretical tools, we can suggest personalized, out-of-the-box ideas
by identifying pairs of concepts, which have unique and extremal
semantic network properties. Finally, we consider possible future
developments and implications of our findings.

semantic network | machine learning | quantum physics | metascience |
computer-inspired science

A computer algorithm with access to a large corpus of pub-
lished scientific research could potentially make genuinely

new contributions to science. With such a body of knowledge, the
algorithm could derive new scientific insights that are unknown
to human researchers and note contradictions within existing
scientific knowledge (1, 2). This level of automation of sci-
ence is more in the realm of science fiction than reality at
present. However, algorithms with access to and the capability of
extracting semantic knowledge from the scientific literature can
be employed in manifold ways to assist scientists and thereby,
augment scientific progress. As an example, the evaluation of
whether an idea is novel or surprising depends crucially on
already-existing knowledge. Thus, a computer algorithm with
the capability to propose new useful ideas or potential avenues
of research will necessarily require access to published scien-
tific literature—which forms at least partially the body of human
knowledge in a scientific field.

Knowledge can be portrayed using semantic networks that rep-
resent semantic relations between concepts in a network (3).
Over the last few years, significant results have been obtained
by automatically analyzing the large corpus of scientific litera-
ture (4–6), including the development of semantic networks in
several scientific disciplines.

In biochemistry, a semantic network has been built using a
well-defined list of molecule names (which correspond to the

nodes of the network) and forming edges when two components
coappear in the abstract of a scientific paper. The network was
derived from millions of papers published over 30 y, and the
authors identify a more efficient collective strategy to explore
the knowledge network of biochemistry (7, 8). In ref. 9, a seman-
tic network was created using 100,000 papers from astronomy,
ecology, economy, and mathematics. The nodes represent ideas
or concepts [generated through automated generation of key
concepts in large bodies of texts (10)]. The authors used the net-
work to draw connections between human innovation process
and random walks. In the field of neuroscience, semantic net-
works have been used to map the landscape of the field (11, 12).
Papers from the interdisciplinary journal PNAS have been used
to investigate sociological properties, such as interdisciplinary
research (13).

Here, we show how to build and use a semantic network for
quantum physics, which we call SEMNET. It is built from 750,000
scientific papers in physics published since 1919. In the network,
we identify a number of historic award-winning concepts, indi-
cating that SEMNET carries useful semantic knowledge. The
evolution of such a large network allows us to use an artificial
neural network for predicting research concepts that scientists
will investigate in the next 5 y. Finally, we demonstrate the power
of SEMNET to suggest personalized and unique directions for
future research.

Significance

The corpus of scientific literature grows at an ever increas-
ing speed. While this poses a severe challenge for human
researchers, computer algorithms with access to a large body
of knowledge could help make important contributions to sci-
ence. Here, we demonstrate the development of a semantic
network for quantum physics, denoted SEMNET, using 750,000
scientific papers and knowledge from books and Wikipedia.
We use it in conjunction with an artificial neural network
for predicting future research trends. Individual scientists can
use SEMNET for suggesting and inspiring personalized, out-of-
the-box ideas. Computer-inspired scientific ideas will play a
significant role in accelerating scientific progress, and we hope
that our work directly contributes to that important goal.
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Our work differs in several aspects from previous seman-
tic networks created from scientific literature. First, we use
machine learning to draw conclusions from earlier states to
SEMNET’s future state, which enables us to make predictions
about the future research trends of the discipline. Second, we
use network theoretical tools and machine learning to identify
pairs of concepts with exceptional network properties. Those
concept combinations can be restricted to the research inter-
est of a specific scientist. This ability allows us to not only
predict but also, suggest uninvestigated concept pairs, which
human scientists might not have identified because they are
out of the own subfield but that have properties that indicate
an exceptional relation. They could be a seed of a new, out-
of-the-box idea. Third, we apply SEMNET to quantum physics,
which has seen an enormous growth during the last decade
due to the potential transformative technologies. The growth
can be seen in the establishment of several high-quality jour-
nals for quantum research (such as Quantum, npj Quantum
Information, and Institute of Physics’s Quantum Science and
Technology), multibillion dollar funding from governments, and
strong involvement of private companies and startups world-
wide. The growth rate leads to enormous increase in scientific
results and publications, which are difficult to follow for individ-
ual researcher—thus, quantum physics is an ideal test bed for
SEMNET.

Semantic Network of Quantum Physics
A semantic network, or knowledge network, represents relations
between concepts in the form of a network. Now, we describe
in more detail how the network is built, especially how the con-
cept list is generated and how links are formed. A schematic
illustration can be seen in Fig. 1; more details are in Fig. 2.

Creation of the Concept List. We generate the concept list via
two independent methods. We use human-made lists of physi-
cal concepts. These concepts are compiled from the indices of 13
quantum physics books (which were available to us in a digital
form) as well as titles of Wikipedia articles that are linked in a
quantum physics category. This human-made collection contains
∼5,000 entries of physical concepts.

Fig. 1. Creating a semantic network for quantum physics (SEMNET). The
nodes represent quantum physical concepts, and the edges (connections
between nodes) indicate how frequently two concepts are investigated
jointly in the scientific literature. The concept list is created using human-
made lists (from Wikipedia categories and quantum physics books) and
automatically generated lists using natural language processing tools on
100,000 quantum physics articles from the online preprint repository arXiv
(this is indicated by black arrows). An edge between two concepts is drawn
when both concepts appear in the abstract of a scientific paper (indicated
by blue arrows). The scientific database consists of 750,000 physics papers:
100,000 from arXiv and 650,000 papers published by the American Physical
Society (APS) since 1919. Illustrations courtesy of Xuemei Gu (Institute for
Quantum Optics and Quantum Information, Vienna, Austria).

We extend the human-generated list with an automatically
generated list of physical concepts. For this, we apply a natu-
ral language processing tool called Rapid Automatic Keyword
Extraction (RAKE) (14) to the titles and abstracts of ∼100,000
articles published in quantum physics categories on the arXiv
preprint server, which we chose to optimize the list for current
research topics in quantum physics. RAKE is based on statisti-
cal text analysis and can automatically find relevant keywords in
texts. We combine the human- and machine-generated lists of
concepts and further optimize them to delete incorrectly iden-
tified concepts (which were introduced by imperfections of the
statistical analysis of RAKE) and names of people (which are
not concepts), merge synonyms, and normalize for the singular
and plural of the same concept. Ultimately, this yields a list of
6,300 terms. As an example, five randomly chosen examples are
“three-level system,” “photon antibunching,” “chemical shift,”
“neutron radiation,” and “unconditionally secure quantum bit
commitment.” Each of these quantum physics concepts is a node
in SEMNET.

Creation of the Network. To form connections between dif-
ferent quantum physics concepts, we use 100,000 articles of
quantum physics categories on arXiv and the dataset of all
650,000 articles ever published by the American Physical Soci-
ety (APS). We chose these two data sources because the APS
database contains peer-reviewed physics papers from the last
100 y (allowing for investigation of long-term trends), while
the arXiv database contains specific quantum physics papers,
allowing for more precise coverage of the quantum physics
research trends.

Whenever two concepts occur together in a title or an abstract
of an article, we interpret that as a semantic connection between
these concepts and add a unique link between the two corre-
sponding nodes in the network. Relations between two concepts
can take many forms. Concepts may be put together, for exam-
ple, when a mathematical tool (such as “Schmidt rank”) is
used to investigate a specific quantum system (such as “vec-
tor beam” or “exciton polariton”), when insights from a spe-
cific technique (such as “lasing without inversion” or “rabi
oscillation”) lead to conclusions about another property (such
as “transport property” or “atom transition frequency”), or
when fundamental ideas (such as “quantum decoherence” or
“quantum energy teleportation”) are studied in the context
of foundational experiments (such as “delayed choice exper-
iment” or “Mermin inequality”). While this method clearly
cannot represent all quantum physics knowledge, it represents
elements of its semantic structure, which we demonstrate in
what follows.

The resulting network SEMNET has 6,368 vertices with more
than 1.7 million edges (drawn from more than 15 million concept
pairs pulled from 750,000 physics articles) using physics articles
from 1919 to December 2017.

We first use the evolution of the semantic network to iden-
tify impactful emerging fields of research in the past. We define
emerging fields as either concepts or concept pairs that have
grown significantly after they had been introduced or connected
for the first time over periods of 5 y.

Fig. 3A shows the quantum physics topics that have grown
the fastest (in terms of numbers of papers in which they have
been mentioned) after their emergence from the years 1987 to
2017. Fig. 3B shows, for each year, which two-concept com-
binations have grown the fastest in the first 5 y after they
had been first connected. In Fig. 3, many of the emerging
fields clearly correspond to important discoveries, advances in
understanding, and shifts of thought within quantum science
research. One of the fastest growing concepts is qubit, which
emerged in 1995 [first in April in a Physical Review A paper
by Schumacher (15) and then, in a paper by Chuang and
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Phys. Rev. Le . 74, 4763 (1995):
[…] The frac on of “interac on-free”
measurements can be arbitrarily close to
1. Using single photons in a Michelson
interferometer, we have performed a
preliminary demonstra on of some of
these ideas. […]

Phys. Rev. X 5, 011003 (2015):
[…] Measuring temporal correla ons of the
posi on of single atoms performing a
quantum walk, we observe a 6σ viola on of
the Legge -Garg inequality. […] The
interac on-free measurement is based on
a novel atom transport system, which
allows us to directly probe the absence
rather than the presence of atoms at a
chosen la ce site. […]

interac on-free
measurement

Legge -Garg
inequality

temporal
correla ons

single 
photons

Michelson
Interferometer

Phys. Rev. A 88, 023812 (2013):
We study the quantum dynamics of a
Michelson interferometer with Fabry-
Perot cavity arms and one movable end
mirror, and driven by a single photon—
an optomechanical device previously
studied by Marshall et al. as a device
that searches for gravity decoherence.
[...]

Fabry-Perot
cavity

Fig. 2. Diagrammatic inner working of SEMNET. Human-generated concept lists (from Wikipedia and books) are combined with automatically generated
lists (with natural language processing, using RAKE on 100,000 arXiv articles) to generate a list of quantum physics concepts. Each concept forms a link in a
semantic network. The edges are formed when two concepts coappear in a title or abstract of any of the 750,000 papers (from arXiv and APS). A mini-version
of SEMNET is shown, using parts of three articles from APS. Edges carry temporal information of their formation year, which leads to an evolution of the
semantic network SEMNET over time.

Yamamoto (16) and arXiv preprints by Knill (17, 18)]. Qubits
are the basic units of quantum information—generalizing clas-
sical bits to coherent quantum superpositions and connecting
quantum mechanics and information science. The emergence
of the qubit can be interpreted as the start of the discipline
of quantum information science. Enormous growth is seen for
topics connected to graphene starting in 2005, the discoverers

of which were awarded the 2010 Nobel Prize in Physics. Inter-
estingly, graphene itself was mentioned (in our data collection)
already back in the early 1990s in Physical Review B papers
(19–21) when it was not a strongly emergent concept itself.
Strong growth in research into topological materials can be
observed from ∼2008; the Nobel Prize in Physics was subse-
quently awarded in this area in 2016. The approach of Aaronson

A B

Fig. 3. The evolution of quantum physics research observed using SEMNET reflected in the change in number of articles that contain a concept or concept
pair per year from 1987 to 2017. (A) Newly emerged concepts and their growth in popularity over a 5-y period after emergence. Shown are the strongest
growing concepts of a 5-y period, which had not been mentioned before that period. (B) Newly connected pairs of concepts that become strongly influential
in the scientific community in a 5-y period. Shown are the strongest growing connections of concept pairs that already existed before the connection
was drawn, which had not been connected before that period. Many emergent concepts and connections can be related to important discoveries and
understandings in quantum science.

1912 | www.pnas.org/cgi/doi/10.1073/pnas.1914370116 Krenn and Zeilinger
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and Arkhipov to achieving quantum supremacy (22) using lin-
ear photonic networks, termed BosonSampling (23), achieved
considerable attention (with more than 600 citations since its
introduction in 2011 and considerable experimental efforts in
this direction). Since 2012, the application of machine learning
to quantum physics has become a prominent and diverse topic of
research that falls under the umbrella of quantum machine learn-
ing (recently summarized in two prominent reviews [24, 25] and
also observable by the foundation of a novel high-quality jour-
nal for this topic, Quantum Machine Intelligence). These findings
confirm that SEMNET contains useful semantic information.

Results
Past Quantum Physics Trends.
Predictive ability of the SEMNET. Having used SEMNET to study
past quantum trends, we investigate its ability to provide pro-
jections of knowledge developments in the future. This essential
question in network science is called link-prediction problem and
asks which new link will be formed between unconnected vertices
of the network in the future given the current state of the net-
work (a detailed investigation of the link-prediction problem in
network theory is in ref. 26). We apply this problem in the con-
text of semantic networks, which are generated from published
scientific literature. In this case of looking at the field of quantum
physics, we ask which two concepts that have not yet been stud-
ied together might be investigated together in a scientific article
over the next 5 y. To answer this question, we use an artificial neu-
ral network with four fully connected layers (two hidden layers).
The structure of the neural network and its training are shown in
Fig. 4. Its task is to rank all unconnected pairs of concepts (roughly
5% of all edges have been drawn by the end of 2017) starting with
the pair that is most likely to be connected in 5 y up to the pair
that most likely stays unconnected. Ultimately, we want to apply
the neural network to the current SEMNET and predict the future
trends. To validate its quality, we first input to the neural network
past states of SEMNET (for example, containing data only up to
2002) and train it to predict new links by 2007. After the training,
we apply this network to 2007 data and validate its quality for data
of the year 2012 (which it has never seen before).

The semantic network is very large [consisting of 6,368× 6,368
entries for each year, which are the number of possible connec-
tions between the 6,368 quantum physics concepts, compared
with 28 × 28 pixels for the famous MNIST dataset of handwrit-
ten images and 256× 256 pixels for ImageNet (27)] and involves
combinatorial, graph-based information that is more structured
than images (28). For that reason, it is an unsuitable direct input
to the neural network. Instead, we compute semantic network
properties for each pair of concepts. For each pair of concepts
(ci , cj ) that are unconnected in SEMNET, we calculate 17 net-
work properties pi,j =(p1

i,j , p
2
i,j , . . . , p

17
i,j ) where pk

i,j ∈R. Here,
p1
i,j and p2

i,j are the degrees of concept ci and cj , and p3
i,j and

p4
i,j are the numbers of papers in which they are mentioned.

While these four properties are purely local, p5
i,j is the cosine

similarity between the two concepts, which corresponds to the
number of common neighbors. A cosine similarity of 1 indicates
that the terms might be synonyms. The next nine properties indi-
cate the number of paths with lengths of 2, 3, and 4 between the
physics concepts in the current and previous 2 y. These proper-
ties allow us to draw conclusions from the evolution over time
of various topics as tracked by SEMNET. The choice to use large
path lengths as one of the properties is strengthened by a very
recent observation that the paths of length 3 are crucial for
link-prediction tasks in a network for protein interactions (29).
Finally, the last three properties correspond to three different
measures of distance between the two concepts. More details can
be seen in SI Appendix.

We explain these properties on a concrete pair of concepts
(Fig. 2): “interaction-free measurement” and “Leggett–Garg
inequality.” (We chose the example randomly from unconnected
concepts that had been mentioned individually more than 30
times.) The concept c2526 represents interaction-free measure-
ment, which is mentioned in 60 abstracts and has 135 connections
to other concepts by 2012. The concept c2819 represents the
Leggett–Garg inequality, which occurs in 33 abstracts and has
141 connections to other concepts by the end of 2012. These two
concepts were not connected in SEMNET as of 2012; therefore,
the 15th property, their network distance, is p15

2526,2819 =2 (neigh-
bors have a distance of 1; in other words, there is a direct path
connecting them of length 1). In 2012, the two concepts have a
cosine similarity p5

2526,2819 =0.228, meaning that 22.8% of their
neighbors are shared. Two years later, in 2014 an article on arXiv
mentioned both of these concepts in the abstract, and the work
was later published (31) and featured (32) in the high-impact
journal Physical Review X, achieving ∼100 citations within 4 y.
This example indicates that drawing first connections between
concepts can lead to significant scientific insights.

The 17 properties for each unconnected concept pair in
SEMNET are used by the neural network to estimate which pairs
of quantum physics concepts are likely to be connected within
5 y and which are not.

To quantify the quality of the predictions, we employ a com-
monly used technique called the receiver operating characteristic
(ROC) curve (30). For this, the neural network is used to clas-
sify unconnected nodes into two sets: one set that is connected
after 5 y and one set that is nonconnected. Fig. 5 shows a signifi-
cant ability to predict connections between pairs of topics—even
though we restrict ourselves to pairs that share less than 20% of
their neighbors (to prevent predictions of concepts that have sim-
ilar meaning). This indicates that even research that draws new
connections between concepts can be predicted with high quality.

Proposing Future Research Topics
Next, we attempt to use SEMNET and the artificial neural net-
work to suggest potentially fruitful research directions in quan-
tum physics. While it is interesting and useful to understand

Fig. 4. Artificial neural network for predicting the future of quantum physics research using the evolution of the semantic network SEMNET. For each
unconnected pair of concepts at a specific year, we derive a vector of 17 network properties (such as distance or cosine similarity). In the training phase, we
input these network properties into an artificial neural network and ask the question of whether they will be connected 5 y later. SEMNET of 2017 is used for
supervision. After training, we can apply the neural network to SEMNET of 2017 and ask what will have happened until the year 2022. Illustrations courtesy
of Xuemei Gu (Institute for Quantum Optics and Quantum Information, Vienna, Austria).
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Fig. 5. Quantifying the prediction quality of the neural network regard-
ing whether unconnected pairs will be connected within 5 y using an ROC
curve. The y axis shows the true-positive (TP) rate (rate of pairs that have
been correctly identified to be connected within 5 y). The x axis shows the
false-positive (FP) rate of predictions—concept pairs that have falsely been
predicted to be connected. We restrict ourselves to concept pairs that share
less than 20% of their neighbors to prevent predictions of terms with simi-
lar semantical meaning. A perfect neural network would have TP = 1 while
FP = 0. A network that classifies 50% of true instances correctly and mis-
classifies 10% of false instance as true would have TP = 0.5 and FP = 0.1. A
random classifier is incorrect half the time and thus, lies along the diagonal.
The area under the curve (AUC) for a perfect neural network is 1, while for
random predictions, it is AUC = 0.5. The AUC can be interpreted as the prob-
ability that the neural network will rank a randomly chosen true instance
higher than a randomly chosen negative instance (30). The ROC validation
curves for 1995, 2005, and 2017 (trained with SEMNET using data from only
1990, 2000, and 2012 and earlier, respectively) are consistently and signifi-
cantly nonrandom, with AUC2017 = 0.85. These results show that the neural
network can learn to predict future research interests in quantum physics
based on historical information to a high accuracy.

future trends, it potentially cannot by itself lead to surprising or
out-of-the-box ideas (otherwise, they would not be predictable).
Therefore, we extend our previous approach with network the-
oretic tools to identify concept pairs with exceptional network-
theoretic properties. Furthermore, since science is conducted
by (groups of) individual scientists, suggestions for proposed
new research directions need to be personalized (otherwise,
we would obtain suggestions for topics in which nobody is an
expert in—which may be potentially interesting but limited in
applicability).

How do we obtain suggestions for an individual scientist?
What we find interesting and surprising strongly depends on
what we already know. To gauge that, we need to investigate
a given scientist’s previously published body of research papers
and extract a list of concepts (from the concept list generated
before) that define that person’s personal research agenda(s).
We define key concepts as concepts investigated overproportion-
ally often by the scientist compared with the relative frequency
of that concept in all 750,000 papers. Each concept ci in the
papers authored by the scientist has a probability pscientist(ci)
that we calculate by the number of occurrences of the con-
cept N (ci) divided by the sum of occurrences of all concepts,
which is pscientist(ci)=

N (ci )∑
j N (cj )

. Each concept also has a proba-
bility of occurring in all 750,000 papers that we use written as
ptotal(ci)=

M (ci )∑
j M (cj )

, where M (ci) is the number of occurrences

of the concept ci in all 750,000 articles. The ratio rscientist(ci)=
pscientist(ci )
ptotal(ci )

indicates the research agenda of the scientist. A value
of rscientist(ci)> 1 shows that the scientist investigates the concept
ci overproportionally often.

Our approach is to identify personalized suggestions of pairs
of concepts that have never been connected. The concepts with
rscientist(ci)> 1 value are paired with all of the other 6,368 con-
cepts. This translates to a list of potentially 100,000s of possible
topic pairs. For further usability, we introduce a way to sort the
candidate suggestions. Suggestions can be sorted by identifying
concept pairs with unique and unusual properties. For each pair
of concepts, we have already calculated 18 different network
properties: 17 properties that have been used by the neural net-
work for generating predictions and the prediction value itself.
Together, these properties define a multidimensional space in
which the location of each concept pair depends on its network
properties.

To identify unusual and unique concept pairs, we search for
outliers in this high-dimensional space. An outlier indicates
a pair of concepts that is uniquely located in the space and
thus, has unique properties in the semantic SEMNET network.
We can visualize, for an anonymous example scientist, a three-
dimensional projection of the high-dimensional space in Fig. 6.
There, every dot corresponds to a concept pair, which is located
according to its network properties. Outliers can be identified by
the darkness of their color.

A few suggestions from SEMNET for the example scientist
are as follows. Some of the highest predicted pairs (from top
10) are “orbital angular momentum” and “magnetic skyrmion,”

Predic�on-Degree-Similarity of 
100.000 personalized Concept Pairs 

Fig. 6. Personalized prediction of topic pairs that could form future
research directions for a given scientist. Each dot represents one uncon-
nected pair of physical concepts. The concepts in use are filtered by a
scientist’s previous research agenda (in the text). The dot is placed in a three-
dimensional space, which is proscribed by the properties of SEMNET and the
predictions of the neural network. One axis is the neural network predic-
tions of whether two unconnected points will be connected in 2022 (the
prediction −0.5 stands for very unlikely, and the prediction 0.5 is very likely).
The y axis represents the average (normalized) degree of the pair (the con-
cept with the highest degree in the complete network has a degree of 1).
The z axis is the cos similarity, which is the ratio of shared neighbors in the
networks of the two concepts. The color of the dots represents the distance
from the most common, average point in this space—darker dots are farther
away from the average. Outliers represent pairs of concepts with a unique
network property, which make them ideal candidate suggestions.
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“spin orbit coupling” and “quantum sensing,” or “dicke model”
and “cloning.” For highly predicted, uncommon pairs (cosine
similarity <0.03; from top 10): “topos theory” and “cyclic opera-
tion,” “critical exponent” and “reed muller code,” and “quantum
key distribution” and “adhm construction.” Unrestricted con-
cept lists are (normalized concept degree <0.1; from top 10)
“atom cavity system” and “mode volume,” “entanglement of for-
mation” and “multiqubit state,” and “neutrino oscillation” and
“dark photon.” More examples are in SI Appendix.

Outlook
Machine Learning. Graph-based machine learning models, which
have been studied in recent years, could improve prediction qual-
ities in the link-prediction task (28, 33, 34). Furthermore, as
SEMNET represents a time evolution of quantum physics’ seman-
tic network, applying efficient tools for handling time-dependent
data, such as a long short-term memory (35), might further
significantly improve the prediction quality. Application of tech-
niques from machine translation could be beneficial to intro-
duce multiple classes of connections within semantic networks
(36). Additionally, combining our approach with unsupervised
embedding of scientific literature, as shown in ref. 37, could lead
to interesting, dynamic networks.

Network Theory and Science of Science. Currently, SEMNET repre-
sents connections between concepts that appear in the scientific
literature. This is of course a vast simplification of scientific
knowledge, as concepts in natural languages can have mani-
fold relations (38). An extension could employ more complex
structures for knowledge representation, such as hypergraphs
(39). The concept list, which represents the nodes of SEMNET,
can be improved by various different, sophisticated ways for
generating lists of concepts and categories (10, 40). The exten-
sion to combinations of more than pairs of concepts will lead
to more complex knowledge representations. Furthermore, it
would be insightful to fold into the semantic network numbers
of article citations, which are, at least in the field of science,
frequently used as a proxy for scientific impact (41–43). This
may enable the prediction of future research directions to be
made taking into consideration the highest potential impact,

potentially accelerating the evolution of individual scientific
knowledge (44, 45).

Surprisingness. In this work, we place pairs of concepts in an
abstract high-dimensional space and identify outliers that have
unique and potentially valuable properties. It would be interest-
ing to apply more and different measures of surprisingness. An
interesting example is the information-based Bayesian surprise
function, which has been introduced in the context of human
attention (46) and successfully applied to the subfield of compu-
tational creativity (47, 48). In order to achieve further progress, it
would be important to further explore and genuinely understand
what human scientists consider as surprising and creative.

Discussion
We show how to create a semantic network in the field of quan-
tum physics, demonstrate its usage to predict future trends in the
field, and show how it can be used to suggest pairs of concepts,
which are not yet investigated jointly but have distinct network
properties. We show how to filter the suggestions for the research
agendas of an individual scientist. The approach presented here
is independent of the discipline of science. As such, it can be
applied to other fields of research.

This can be interpreted as one potential road toward compu-
ter-inspired science in the following sense. We imagine cases
(which we believe are possible) where SEMNET produces seeds
or inspiration of unusual ideas or directions of thoughts that a
researcher alone might not have thought of. The subsequent suc-
cessful interpretation and scientific execution of the suggestions
fully remain the task of a creative, human scientist.
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